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[1] A new mathematical model clarifies how diverse styles and rates of landslide motion
can result from regulation of Coulomb friction by dilation or contraction of water-
saturated basal shear zones. Normalization of the model equations shows that feedback
due to coupling between landslide motion, shear zone volume change, and pore pressure
change depends on a single dimensionless parameter a, which, in turn, depends on
the dilatancy angle y and the intrinsic timescales for pore pressure generation and
dissipation. If shear zone soil contracts during slope failure, then a < 0, and positive
pore pressure feedback and runaway acceleration are inevitable. If the shear zone dilates,
then a > 0, and negative feedback permits slow, steady landslide motion to occur while
positive pore pressure is supplied by rain infiltration. Steady state slip velocities v0
obey v0 = �(K/y) p*e, where K is the hydraulic conductivity and p*e is the normalized
(dimensionless) negative pore pressure generated by dilation. If rain infiltration and
attendant pore pressure growth continue unabated, however, their influence ultimately
overwhelms the stabilizing influence of negative p*e. Then, unbounded landslide
acceleration occurs, accentuated by an instability that develops if y diminishes as
landslide motion proceeds. Nonetheless, numerical solutions of the model equations
show that slow, nearly steady motion of a clay-rich landslide may persist for many
months as a result of negative pore pressure feedback that regulates basal Coulomb
friction. Similarly stabilized motion is less likely to occur in sand-rich landslides that
are characterized by weaker negative feedback.

Citation: Iverson, R. M. (2005), Regulation of landslide motion by dilatancy and pore pressure feedback, J. Geophys. Res., 110,

F02015, doi:10.1029/2004JF000268.

1. Introduction

[2] Landslides exhibit a great diversity of movement
styles and rates, ranging from barely discernable creeping
slip to catastrophic avalanching. This diversity has large
implications for downslope hazards and sediment delivery,
but it cannot be assessed using traditional slope stability
analyses, which consider only conditions necessary to
trigger landsliding. Many assessments of landslide diversity
have emphasized the qualitative effects of soil and rock
properties as well as geologic, hydrologic, and topographic
variables [e.g., Cruden and Varnes, 1996]. On the other
hand, quantitative models of landslide motion generally
have focused on specific types of landslides, such as slow
earthflows or rapid debris flows and rock avalanches [e.g.,
Vulliet and Hutter, 1988; Takahashi, 1991; Baum and
Johnson, 1993; Hungr, 1995]. No theory has been available
to bridge the gap in understanding landslide movement that
ranges from a few centimeters per year to many meters per
second, and no theory has provided a mechanistic frame-
work for assessing whether slow, persistent movement
might eventually lead to catastrophic acceleration.

[3] In this paper I describe a new theoretical model that
shows how mechanical feedbacks might be responsible for
some of the observed diversity in landslide styles and
rates, and might produce abrupt transitions from slow to
rapid motion. The model incorporates feedback between
landslide displacement and attendant shear zone dilation or
contraction that modulates basal pore water pressure and
sliding friction. As demonstrated in experiments, shear zone
contraction produces elevated pore pressures and positive
feedback, whereas shear zone dilation produces diminished
pore pressures and negative feedback [e.g., Iverson et al.,
2000]. Consequences of this feedback depend on a variety
of factors, but in all cases the strength of feedback depends
on the shear zone dilatancy and intrinsic timescales for pore
pressure generation and dissipation.
[4] The relationship between shear deformation, dilatancy

and pore pressure change in granular media has been
understood qualitatively since at least the time of Reynolds
[1885, 1886]. Modern work on dilatancy and pore pressure
feedback includes important theoretical contributions by
Frank [1965], Rice [1975], Rudnicki [1984], and Segall
and Rice [1995]. These papers and others aimed principally
at understanding fault mechanics emphasize mechanical
systems in which near-field deformation and pore pressure
obey specified stress-strain formulae and are driven by far-
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field tectonic strain. The landslide problem has many
similarities but differs fundamentally because motion is
driven by imposed stress, not strain. In the model developed
here, the stress state is treated as one-dimensional and
statically determinate, and use of explicit stress-strain for-
mulae is therefore unnecessary. Instead, landslide motion
obeys Newton’s second law and is resisted only by basal
Coulomb friction. This simple model provides a parsimo-
nious framework for evaluating effects of pore pressure
feedback, and it also provides a foundation for development
and testing of more realistic landslide models that account
for multidimensional deformation and internal friction [e.g.,
Iverson and Denlinger, 2001; Savage and Iverson, 2003;
Denlinger and Iverson, 2004].
[5] The model developed here also can be viewed as an

extension of Hutchinson’s [1986] sliding-consolidation
model. In both models rigid body translation of a landslide
block is regulated by basal pore fluid pressure that obeys a
one-dimensional diffusion (i.e., consolidation) equation.
However, pore pressure feedback, which is a central feature
of the present model, is absent in the sliding-consolidation
model.

2. Model Formulation

[6] The new model has two primary components, an
ordinary differential equation describing downslope motion
of a slide block that obeys Newton’s second law, and a
partial differential equation describing diffusion of excess
pore fluid pressure generated in a shear zone at the base of
the slide block. The differential equations are coupled
mathematically through a boundary condition that summa-
rizes the effects of volume change in the basal shear zone.
This coupling provides a mechanism for feedback and

nonlinear response, and an additional nonlinearity is im-
posed by the constraint that slide block motion is irrevers-
ible (i.e., under no circumstances does the slide block move
uphill).

2.1. Equations Governing Slide Block Motion

[7] Consider a solid, poroelastic block descending (or
poised to descend) a rigid, planar slope that is inclined at an
angle q and aligned with rectangular Cartesian coordinates x
and y (Figure 1). The block is one-dimensional in the sense
that internal stresses and strains are assumed to vary only
normal to the block surface. However, motion of the block
is two-dimensional in the sense that rigid body displacement
in the x direction (ux) is accompanied by rigid body
displacement in the y direction (uy), which results solely
from volume change in a plastically deforming shear zone at
the base of the block. In other words, rigid body displace-
ment occurs not in the direction of x, but instead in the
direction of a rotated coordinate x0 (Figure 1).
[8] Specification of the initial volume or porosity of the

basal shear zone is unnecessary, but the propensity for shear
zone volume change is specified by a dilatancy angle, y,
which is positive in the case of dilative shearing and
negative in the case of contractive shearing. Phenomeno-
logically, y can be represented in terms of incremental
components of slide block displacement by [cf. Taylor,
1948; Nemat-Nasser, 1980; Bolton, 1986]

tany ¼ Duy=Dux: ð1aÞ

Experimental data show that values y < 0.35 (i.e., y < 20�)
are typical of granular soils, such that tan y � y [Bolton,
1986]. Therefore for infinitesimal displacements (1a) can be
approximated by

y ¼ duy=dux: ð1bÞ

In general, the value of y evolves as slide block
displacement proceeds, and y ! 0 if displacements become
large enough that the deforming soil in the shear zone
approaches a constant, critical state porosity [e.g., Roscoe,
1970; Negussey et al., 1988]. Part of the analysis below is
aimed at gaining a clear understanding of slide block
behavior for simple cases in which y is constant, but
numerical results are then presented for cases in which y
decays toward zero as slide block displacement proceeds.
Further discussion of the role and evolution of y
accompanies the presentation of numerical results.
[9] To analyze slide block motion, it is convenient to

resolve forces at the base of the block using a coordinate
system x0-y0 rotated with respect to the x-y system by the
angle y (Figure 1). Gravity imposes a driving force in the x0

direction equal to rgHA sin (q � y), where H is the slide
block thickness, r is the slide block mass density averaged
over the thickness H, g is the magnitude of gravitational
acceleration, and A is the area of the slide block base. The
component of gravitational force acting in the y0 direction is
�rgHA cos (q � y), and the consequent frictional resistance
that opposes motion in the x0 direction is �rgHA cos (q �
y) tan f, where f is an appropriate basal friction angle. The
relationship between f and y is discussed in conjunction
with equations (4a) and (4b) below.

Figure 1. Schematic illustrating the coordinate systems
and geometric variables used to analyze slide block motion
and pore pressure evolution.
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[10] Basal frictional resistance is modified by basal pore
fluid pressure, p(0, t), assumed to act uniformly along the
base of the slide block but allowed to vary with time. The
component of the fluid pressure force acting in the y0

direction reduces the basal frictional force acting in the x0

direction by p(0, t)A cos y tan f.
[11] Summing the downslope driving force and frictional

resisting force yields an expression for the net downslope
force in the x0 direction,

Fx0 ¼ rgHA sin q� yð Þ � rgHA cos q� yð Þ tanf
þ p 0; tð ÞA cosy tanf: ð2Þ

If Fx0 > 0, downslope acceleration of the slide block occurs,
and the consequent change in momentum in the x0 direction
is given by rHA(d2ux0/dt

2) = Fx0. The resultant momentum
change in the x direction is smaller by a factor cos y, and is
given by rHA(d2ux/dt

2) = cos y Fx0.
[12] Substituting (2) into the expression for the x direction

momentum change and dividing the result by rgHA yields
an equation describing the x component of slide block
motion:

1

g

d2ux

dt2
¼ cosy sin q� yð Þ � cos q� yð Þ� p 0; tð Þ

rgH
cosy

� �
tanf

� �
:

ð3aÞ

Through use of trigonometric identities [Dwight, 1961,
equations (401.02) and (401.03)], (3a) can be rewritten in a
form that isolates the influences of q, f, and y:

1

g

d2ux

dt2
¼ cos2 y sin q� cos q� p 0; tð Þ

rgH

� �
tanf

� ��

� tany cos qþ sin q tanfð
�
: ð3bÞ

The term in square brackets on the right-hand side of (3b)
describes the net x direction force that exists if y = 0. This
term can be generalized to include the effects of cohesive
strength c by adding �c/rgH, but effects of cohesion play
no essential role in the problem at hand, and are therefore
omitted. Equations (3a) and (3b) can also be generalized to
account for centripetal accelerations due to slide block
rotation caused by changes in y or q, but for the sake of
brevity and clarity, the ensuing analysis neglects effects of
rotation.
[13] In this simple model the effect of dilatancy y on

shear resistance is statically equivalent to a modification of
the effective friction angle [cf. Rowe, 1962; Bolton, 1986;
Negussey et al., 1988], and this equivalence can be illus-
trated by setting the acceleration term on the left-hand side
of (3b) to zero. Dividing all terms of the resulting equation
by cos2 y cos q yields an equation governing limiting
equilibrium of the static slide block:

tan q 1� tanf tanyð Þ � tanfþ tanyð Þ þ pcrit

rgH cos q
tanf ¼ 0;

ð4aÞ

where pcrit is the critical value of the basal pore pressure p(0,
t) necessary to trigger motion. Setting y = 0 reduces (4a) to

a form of the standard infinite-slope limit-equilibrium
equation [e.g., Taylor, 1948], whereas setting pcrit = 0
reduces (4a) to the static balance

tan q ¼ tan fþ yð Þ ¼ tanfþ tany
1� tanf tany

: ð4bÞ

Equation (4b) is analogous to the standard ‘‘angle of
repose’’ equation, tan q = tan f, but (4b) indicates that the
effective basal friction angle resisting motion of the slide
block in the x direction is f + y. This result recapitulates
findings of Rowe [1962] and Nemat-Nasser [1980], who
analyzed limiting equilibrium of dilatant granular masses
subject to specified external forces. The momentum
balances used here differ from the static balances considered
by Rowe [1962] and Nemat-Nasser [1980], because here the
force components imposed by gravity as well as the
resulting acceleration of the slide block can vary as a
consequence of the geometrical influence of y.
[14] A key point established by (3a), (3b), (4a), and (4b)

is that quasistatic effects of shear zone dilatancy y can be
regarded as modifications of either the effective slope angle
or the effective friction angle. However, the friction angle f
employed in this paper is independent of y and does not
depend on volume changes associated with shear zone
dilation and contraction [cf. Negussey et al., 1988].

2.2. Equations Governing Pore Pressure Diffusion

[15] To analyze evolution of pore fluid pressure, it is
convenient to use a coordinate z that translates with the base
of the slide block (Figure 1). The coordinate

z ¼ y� uy ð5Þ

specifies that the base of the slide block (i.e., the upper
margin of the basal shear zone) is located at z = 0 at all
times.
[16] Awater table is assumed to exist a priori at height z =

Z above the base of the slide block (Figure 1), and evolution
of the pore pressure p beneath the water table is assumed to
be governed by the conventional linear diffusion equation
that describes transient, one-dimensional, saturated ground-
water flow in a poroelastic medium that undergoes no
change in total stress:

@p

@t
¼ D

@2p

@z2
: ð6Þ

Here D is the hydraulic diffusivity (also known as the
consolidation coefficient), which is assumed to be constant.
Equation (6) is readily derived using the principles of mass
conservation, Darcian flux of pore water, effective stress,
and one-dimensional elastic deformation [e.g., Terzaghi,
1943; Gambolati, 1973], but the derivation is omitted here
for the sake of brevity. A more realistic pressure-diffusion
model would account for evolution of D due to changes in
material properties or water content, but a need exists to
understand the behavior of a simple model with a constant
D before this complication is addressed.
[17] For purposes of the analysis below, it is useful to

split the total pore pressure p in (6) into two components:

p z; tð Þ ¼ pi z; tð Þ þ pe z; tð Þ; ð7Þ
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where pi is the imposed pore pressure due to processes such
as rain infiltration, and pe is the excess pore pressure (either
positive or negative) that develops in response to contrac-
tion or dilation of the basal shear zone. Substitution of (7)
into (6) yields a diffusion equation for coevolution of the
two pressure components pe and pi.

2.2.1. Imposed Pore Pressure
[18] Evolution of the imposed pressure pi serves to trigger

slide block motion and also influences postfailure sliding,
but in the model developed here, this behavior merely
provides a backdrop for assessing the effects of feedback
involving coupled slide block motion and excess pore
pressure production. Therefore to facilitate analysis of
feedback, pi is specified so that it has a simple mathematical
form that emulates pore pressure distributions beneath a
rising water table, without representing the complicated
dynamics of water table accretion. Thus pi is specified by

pi z; tð Þ ¼ rwg b Z � zð Þ þWK t þ Z � zð Þ2

2D

 !" #
; ð8Þ

where rw is the pore water density, K is the saturated
hydraulic conductivity beneath the water table, and b and W
are dimensionless constants of order 1.
[19] Appendix A provides an in depth discussion of b, W

and the form of equation (8), but a few key properties of the
equation deserve mention here. First, (8) satisfies a diffusion
equation, such that beneath the water table one-dimensional
groundwater flow caused by rain infiltration obeys [cf.
Iverson, 2000]

@pi
@t

¼ D
@2pi

@z2
: ð9Þ

Second, (8) satisfies flux (i.e., pressure gradient) boundary
conditions given by

@pi
@z

Z; tð Þ ¼ �rwgb ð10Þ

@pi
@z

0; tð Þ ¼ �rwg bþW
K

D
Z

� �
: ð11Þ

These conditions imply that the downward flux of water at
height z = Z exceeds that at the slide block base at z = 0. The
consequent flux imbalance serves to increase the pore
pressure between z = Z and z = 0, and the rate of increase
depends on W(K/D)Z, a dimensionless quantity that
summarizes the effect of transient rain infiltration on
groundwater storage beneath the water table (Appendix A).
Effects of the groundwater flux imbalance are depicted
graphically in Figure 2, which shows plots of a normalized
version of (8):

pi* z*; t*ð Þ ¼ b 1� z*ð Þ þW
K

D
Z t*þ 1

2
1� z*� z* 1� z*ð Þ½ 


� �
:

ð12Þ

Here p*i = pi/rwgZ is the normalized pore pressure, z* = z/Z
is the normalized height, and t* = t/(Z2/D) is the normalized
time. The graphs of Figure 2 show that as values of W(K/
D)Z decline toward a limit of zero, pore pressure
distributions described by (8) and (12) converge toward
steady state (i.e., linear) distributions.
[20] Equation (8) implies that the imposed pore pressure

at the slide block base obeys

pi 0; tð Þ ¼ rwg bZ þWK t þ Z2=2D
� � �

; ð13Þ

Figure 2. Graphs depicting evolution of the imposed pore
pressure distribution, which is described in detail in
Appendix A. Solid lines represent equation (12), and
dashed lines represent a linear approximation of (12). All
graphs depict behavior for the same normalized time
sequence from t* = 0 to t* = 1, but Figures 2a, 2b, and
2c show behavior for differing values of the parameter W(K/
D)Z. All graphs assume b = 0.5.
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which indicates a linear increase of pressure with time
(Figure 2). Once slide block motion commences, excess
basal pore pressure that develops in response to motion is
added to (13) to determine the total basal pore pressure that
affects the slide block’s basal friction.
2.2.2. Excess Pore Pressure
[21] Because evolution of the total pore pressure pi + pe is

governed by a diffusion equation, and pi satisfies its own
diffusion equation, the excess pore pressure pe also satisfies
a diffusion equation:

@pe
@t

¼ D
@2pe

@z2
: ð14Þ

This is the standard equation used to assess evolution of
excess pore pressure in soils without changes in total stress
[e.g., Lambe and Whitman, 1979]. In the present instance,
however, the implications of (14) are nonstandard because
generation of excess pore pressure in the basal shear zone
couples (14) to slide block motion.
[22] Coupling of (14) to slide block motion is specified

by a basal boundary condition that describes pore fluid
exchange between the deforming basal shear zone and the
overlying slide block. If the solid and fluid constituents in
the shear zone are effectively incompressible (a reasonable
assumption for the total stress magnitudes <1 MPa typical
of most landslides), porosity change within the shear zone
determines the fluid influx or efflux that accompanies shear
zone volume change. Assuming that this fluid flux obeys
Darcy’s law, the excess pore pressure gradient that develops
in reaction to the flux through the boundary of the shear
zone is given by [Iverson, 1993]

@pe
@z

0; tð Þ ¼ rwg
K

duy

dt
: ð15aÞ

Here duy/dt is the slope-normal velocity component of the
slide block, which is directly proportional to the rate of
shear zone volume change. The derivation of (15a) assumes
that fluid flow associated with @pe/@z(0, t) occurs only
through the upper surface of the basal shear zone, but this
assumption can easily be modified if desired [Iverson,
1993].
[23] The basal boundary condition (15a) can be expressed

in alternative forms. For example, (15a) can be expressed in
terms of the downslope slide block velocity v = dux/dt
because (1b) implies that duy/dt = y (dux/dt). Thus (15a)
may be rewritten as

@pe
@z

0; tð Þ ¼ rwg
K

yv: ð15bÞ

A more complicated form of the basal boundary condition
applies to the total pore pressure gradient @p/@z, and this
form is obtained by adding (15a) or (15b) to the imposed
basal pressure gradient specified by (11).
[24] The upper boundary condition stipulates that pe = 0 at

the water table. However, because the evolving position of
the water table may not be precisely known, the boundary
condition is enforced at the original water table position z = Z:

pe Z; tð Þ ¼ 0: ð16Þ

Equation (16) applies exactly for the initial condition, which
stipulates that no excess pore pressure exists:

pe z; 0ð Þ ¼ 0: ð17Þ

Equation (16) also applies exactly for steady state condi-
tions in which negative excess pore pressure combines with
the imposed pore pressure to hold the total pore pressure,
downward water flux, and water table height constant.
(Development of such steady states is detailed in section 3
below.) For unsteady states with evolving water table
heights, the maximum error that results from use of (16) can
be estimated by considering a case in which the water table
height is unregulated by excess pore pressure feedback and
therefore grows at the rate WK implied by (8). In this case
(16) is replaced by the boundary condition pe(Z + WKt,t) =
0. Numerical trials showed little sensitivity to the use of this
condition versus the simpler condition given by (16).
Therefore (16) is adopted as a satisfactory upper boundary
condition.

2.3. Normalized Equations

[25] The equations described above are normalized and
simplified by introducing dimensionless variables defined as

z* ¼ z

Z
; t* ¼ t

Z2=D
; v* ¼ dux=dt

g Z2=Dð Þ ;

pe* ¼ pe

rwgZ
; pi* ¼ pi

rwgZ
:

ð18Þ

Also, to simplify notation, two groups of geometric
parameters in (3a) are renamed as

C1 ¼ cosy sin q� yð Þ ð19Þ

C2 ¼ cosy cos q� yð Þ; ð20Þ

and a parameter that encapsulates the effects of the density
ratio rw/r and length-scale ratio Z/H is defined as

C3 ¼ cos2 y
rw
r

Z

H
: ð21Þ

The primary length scale is chosen to be Z rather than H
because use of Z minimizes the appearance of parameters in
the normalized equations. However, use of H is a reasonable
alternative, and the choice of length scale does not influence
the physically relevant results. For similar reasons, Z2/D is
chosen as the sole timescale in the normalized equations,
although the analysis below shows that another timescale is
also important.
[26] Combining (18), (19), (20), and (21) with (3), (6),

(7), (8), (9), (15b) and (16) yields a system of normalized
governing equations and boundary conditions

dv*

dt*
¼ C1 � C2 � C3 pi* 0; t*ð Þð Þ þ pe* 0; t*ð Þ½ 
 tanf; ð22Þ

@pe*

@t*
¼ @2pe*

@z*2
; ð23Þ

@pe*

@z*
0; t*ð Þ ¼ av*; ð24Þ

pe* 1; t*ð Þ ¼ 0; ð25Þ
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in which the dependent variables are the normalized
downslope slide block velocity v* and the normalized
excess pore pressure p*e. Accompanying initial conditions
are

v* 0ð Þ ¼ v0* ð26Þ

pe* z*; 0ð Þ ¼ 0; ð27Þ

where v*0 is a specified initial velocity, commonly equal to
zero.
[27] Equations (22)–(27) show that only a few parame-

ters affect the coupled evolution of v* and p*e, and of these
parameters only a varies greatly. (The other parameters are
the geometric quantities C1, C2 tan f, and C3 tan f, which
are unlikely to have values outside the range 0.1–1.) The
parameter a appears in the basal boundary condition (24)
and is defined by

a ¼ Z2=D

K=g

� �
y: ð28Þ

Physical interpretation of a is straightforward. The sign of a
is determined by the sign of the dilatancy angle y, such that
a > 0 for dilatant shearing and a < 0 for contractive
shearing. The magnitude of a varies in proportion to the
term in brackets in (28). The denominator of this term is the
timescale for pore pressure generation due to gravity-driven
deformation of the basal shear zone, and the numerator is
the timescale for pore pressure diffusion within the slide
block. Together with y, the ratio of these two timescales
controls the strength of coupling of the differential
equations (22) and (23). Typically jaj � 1 because (Z2/
D)/(K/g) > 1000 is typical of most landslides (e.g., Table 1).
Therefore effects of feedback on coupled solutions of (22)
and (23) are generally strong.

3. Analytical Results

[28] Although numerical methods are generally needed to
solve the coupled system of time-dependent equations (22)–
(27), the analysis below provides physical insight by using

exact solutions to assess the existence of steady states and
their stability when subjected to transient perturbations.

3.1. Steady States

[29] Steady sliding occurs if the right-hand side of the
equation of motion (22) equals zero. This condition exists if
the total basal pore pressure p*i (0, t*) + p*e (0, t*) has a
critical value given by

pcrit* ¼ 1

C3

C2 �
C1

tanf

� �
; ð29Þ

where p*crit = pcrit/rwgZ is the normalized version of the
total basal pore pressure necessary to balance forces (see
equation (4a)). A special steady state exists when forces are
statically balanced at limiting equilibrium.
[30] Through use of p*crit, the equation of motion (22)

can be rewritten as

1

C3 tanf
dv*

dt*
¼ pi* 0; t*ð Þ þ pe* 0; t*ð Þ � pcrit* : ð30Þ

The steady state solution of (30) is v* = v*0, and the static
solution v* = 0 represents a special steady state.
[31] The excess pore pressure equation (23) has a steady

state solution that satisfies the basal and upper boundary
conditions (24) and (25). This solution,

pe* z*ð Þ ¼ �av0* 1� z*ð Þ; ð31Þ

implies that an infinite number of steady states can exist,
and that each steady pore pressure distribution is associated
with a particular value of the steady sliding velocity, given
by

v0* ¼ � 1

a
pe* 0ð Þ ¼ 1

a
pi* 0ð Þ � pcrit*½ 
: ð32aÞ

At steady state, the vertical profiles of the imposed, excess,
and total pore pressures are all linear, and the downward
flux of water across the water table equals the downward
flux into the dilating basal shear zone. The steady sliding
rate v*0 increases in direct proportion to this water flux.

Table 1. Parameter Values Used in Computationsa

Parameter and Units
Experimental Landslide
Loose Loamy Sand

Experimental Landslide
Dense Loamy Sand

Minor Creek Landslide
Gravelly Sandy Clay

D, m2/s 1  10�3 3  10�3 1  10�6

g, m/s2 9.8 9.8 9.8
H, m 0.65 0.65 6.0
K, m/s 2  10�4 2  10�5 5  10�8

v0, m/s 0 0 0
W, dimensionless 1 1 1
Z, m 0.65 0.46, 0.65 5.6
a, dimensionless 0, �2.2  106 3.6  106, 7.2  106 3.2  1014

b, dimensionless 0 0 0
q, deg 31 31 15
r, kg/m3 1800 2000 2200
rw, kg/m

3 1000 1000 1000
f, deg 35 35 15
y, deg 0, �6 6 3

aData sources are Iverson [1984], Iverson and Major [1987], Hovind [1990], and Iverson et al. [2000]. Where two values are
tabulated, they apply to two different scenarios described in the text.
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[32] The physical implications of (32a) can be further
illustrated by writing the equation in terms of dimensional
variables:

v0 ¼ �K

y
pe 0ð Þ
rwgZ

� �
¼ K

y
pi 0ð Þ � pcrit

rwgZ

� �
: ð32bÞ

This form of the equation shows that steady sliding
velocities v0 are likely to be no larger than K/y, as the
pore pressure factor in brackets on the right-hand side of the
equation is unlikely to be larger than 1. Thus K/y may be
interpreted as an ‘‘intrinsic’’ scale for the steady state slide
block velocity, and this scale is smaller by a factor a than
the ‘‘extrinsic’’ velocity scale g(Z2/D) used in the unsteady
velocity equation (22).
[33] Figure 3 depicts graphs of (32b) that illustrate how

the steady slide block velocity depends on K/y and the
pore pressure difference pi � pcrit. The behavior shown in
Figure 3 superficially mimics the behavior of a viscoplastic
(i.e., Bingham) material. That is, slide velocity is propor-
tional to the difference between an imposed net driving
force (proportional to pi � pcrit in this instance) and a
threshold necessary to instigate motion (represented by pcrit
in this instance). This superficial resemblance to visco-
plastic behavior exists despite the fact that sliding resistance
is provided by rate-independent Coulomb friction. The
apparent ‘‘viscosity’’ regulating slide block motion is pro-
duced by steady diffusion of excess pore pressure, which
can persist only as long as steady dilation persists and the
coupling between slide block motion and excess pore
pressure production generates steady negative feedback
that stabilizes the motion. Analysis of slide block responses
to transient perturbations helps clarify the propensity for
this type of regulation in more realistic (unsteady state)
situations.

3.2. Transient Perturbations

[34] To facilitate analysis of transient responses, it is
useful to couch the slide block equation of motion (30) in
terms of new variables. A rescaled slide block velocity is
defined as

~v* ¼ v*=C3 tanf: ð33Þ

The rescaled velocity, imposed basal pore pressure, and
excess basal pore pressure are then decomposed into steady
components (denoted by a subscript s) and transient
components (denoted by a prime):

~v* ¼ ~vs*þ ~v*0 t*ð Þ; pe* 0; t*ð Þ ¼ pe*js þ pe*
0 t*ð Þ;

pi* 0; t*ð Þ ¼ pi*js þ pi*
0 t*ð Þ:

ð34Þ

In the remainder of this section, asterisks are omitted to
simplify the notation, but the variables are normalized as
described above.
[35] Substitution of (33) and (34) into (30) and cancella-

tion of steady state terms that sum to zero yields an equation
of motion obeyed by the transient components

d~v0

dt
¼ p0e tð Þ þ p0i tð Þ: ð35Þ

If ~v0 and p0e represent arbitrarily small perturbations or
deviations from a steady state, the dependence of p0e (t*) on
~v0 can be approximated by the first term of a Taylor’s series
expansion, which gives the linear equation

p0e tð Þ � ~v0
dp0e
d~v0

� �
s

¼ ~v0
dpe

dv0
¼ �~v0a: ð36Þ

In (36) the subscript s indicates that the derivative is
evaluated about the steady datum state, where perturbations
vanish. Equation (32a) thus implies the relation dpe/dv0 =
�a used in (36).
[36] Substitution of (36) into (35) yields an uncoupled

linear differential equation that includes the first-order
effects of pore pressure feedback:

d~v0

dt
þ a~v0 ¼ p0i tð Þ: ð37Þ

This equation can be solved for any imposed pore pressure
history p0i(t) by using an integrating factor eat, as described
by Rainville and Bedient [1974, pp. 37–39]. The solution
satisfying the initial condition ~v0(0) = ~v0 may be written as

~v0 tð Þ ¼ e�at ~v0 þ
Z

eatp0i tð Þdt
� �

: ð38Þ

[37] The solution (38) behaves differently depending on
whether the shear zone soil is contractive (a < 0) or dilative
(a > 0). For a < 0 (38) indicates that responses to positive
imposed pore pressure perturbations p0i(t) are necessarily
unstable, because ~v0(t) grows unbounded like e�at. This
mathematical instability results from the positive feedback
associated with shear zone contraction. Slide block motion
produces positive excess pore pressure, which prompts
faster slide block motion, which produces more excess pore
pressure, and so on. For a > 0 slide block responses are

Figure 3. Graphs of steady sliding velocities specified by
equation (32b). Velocities are graphed as functions of the
normalized value of the net basal pore pressure pi � pcrit =
�pe. The graphs employ values of K/y and a for dilative
landslide soil, with physical properties summarized in
Table 1.
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stable because ~v0(t) decays with time like e�at. Table 2 lists
examples of solutions obtained by evaluating the integral in
(38) for various imposed pressure perturbations p0i(t) with
limited amplitudes and durations. For a > 0 these solutions
indicate that the slide block velocity decays to a steady state
as time proceeds because dilatancy produces negative pore
pressure feedback that stabilizes the motion.
[38] A different type of behavior is possible if a > 0 but

the imposed basal pore pressure grows continually in time,
as described by (13). The normalized version of (13) is

pi 0; tð Þ ¼ bþW
K

D
Z t þ 1

2

� �
; ð39Þ

which consists of a constant term plus a term that grows
linearly with time, W(K/D)Zt. Retaining only the time-
dependent term in (39), substituting it in (38), and evaluating
the resulting integral yields the solution

~v0 tð Þ ¼ ~v0e
�at þW

K

D
Z

1

a

� �
1

a
e�at � 1ð Þ þ t

� �
: ð40Þ

The first term on the right-hand side of (40) represents the
decaying influence of the initial condition, whereas the
second term represents an evolving competition between
accelerating slide block motion described by (1/a) [W(K/
D)Z]t and suppression of slide block motion by an
amount (1/a2) [W(K/D)Z] (e�at � 1). Suppression of motion
is significant at short times but decays as time proceeds. This
effect is illustrated in Figure 4, in which graphs of (40) show
that rapid acceleration is delayed for a time proportional to a.
The period of slow, stabilized motion following slope failure
can be very long if a is very large, but it eventually gives way
to unbounded acceleration. This behavior indicates that shear
zone dilation cannot stabilize motion indefinitely if continual
forcing by rainfall infiltration occurs, even if the dilatancy
angle y remains constant.

4. Numerical Results

[39] Numerical methods are used to solve the full system
of equations (22)–(27) with unrestricted feedback between
the dependent variables v* and p*e and with evolution of y.
The numerical solution technique is straightforward and
employs a stepwise analytical method for (22) and the
Crank-Nicolson method for (23) [Crank, 1975; Press et
al., 1986]. At each time step (22) is solved analytically
using pore pressure values from the preceding time step.
New pore pressures are then computed by solving (23) with
the boundary condition (24) updated to reflect the new slide
block velocity. This method can be refined with a predictor-
corrector procedure in which updated pore pressures are

used to re-solve (22) for the preceding time step, and then
an average of the two solutions of (22) is used to re-solve
(23) before proceeding. However, trial calculations showed
that implementation of this procedure had little effect on
results. Therefore the results shown here were generated
using a forward time-stepping procedure.
[40] Discretization of (22) and (23) involves several

considerations. Because (22) is a first-order, linear equation
with coefficients that are constant except for the dependence
on pore pressure, a stepwise exact solution of (22) may be
written in terms of dimensional variables as

Dux ¼
1

2
g Dtð Þ2 C1 � C2 � C3

pi 0; tð Þ þ pe 0; tð Þ
rwgZ

� �
tanf

� �
þ voldDt þ uold; ð41Þ

where Dux is the downslope displacement during the time
step Dt, and vold and uold are the slide block velocity and
displacement at the end of the preceding time step. The
accuracy of this solution is limited only by resolution of the
basal pore pressure, and accurate resolution of pe (0, t)
requires use of much finer time discretization than would
be required for numerical solution of the diffusion
equation (22) alone. As a consequence, time steps (Dt)
used in all calculations were no larger than 0.1 s, and for
short-term calculations were as small as 0.0001 s. Relatively
fine spatial discretization of the diffusion equation was also
necessary, because accurate resolution of the basal pore
pressure gradient that appears in the coupling equation (24)

Table 2. Solutions for Slide Block Motion Obtained by Evaluating the Integral in Equation (38) for Various

Imposed Pore Pressure Perturbations pi(t)
a

p0i(t) ~v0(t) Comments

W ~v0 e
�at + W

a (1 � e�at) motion decays to a new steady state with velocity ~v0 + (W/a)

We�lt ~v0e
�at + W

a�l(e
�lt � e�at) motion decays to original steady state with velocity ~v0

W(1 � e�lt) ~v0e
�at + W

a (1 � e�at) � W
a�l(e

�lt � e�at) motion decays to a new steady state with velocity ~v0 + (W/a)

aAll solutions assume W and l are arbitrary constants.

Figure 4. Graph of equation (40) illustrating evolution of
the rescaled slide block velocity ~v0 for several values of the
parameter a. All graphs employ the initial condition ~v00 = 0
and the pore pressure forcing parameter W(K/D)Z = 1.
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is crucial. Therefore all calculations used a minimum of
50 space nodes to define Dz, and some calculations used as
many as 400 space nodes. A final numerical consideration
involved the relative sizes of Dt and Dz. Despite the
unconditional stability of the Crank-Nicolson method,
Courant numbers, defined as 2D(Dt)/(Dz2), were restricted
to be no larger than 1 to promote accurate convergence
[cf. Press et al., 1986; LeVeque, 2002]. Sizes of time steps
were reduced as necessary to satisfy this Courant condition.
Despite these restrictions, no computations described here
required more than about 10 min of CPU time to execute a
double precision FORTRAN program on a personal
computer with a 2.3 GHz processor.
[41] The computational results summarized below illus-

trate landslide behavior in diverse scenarios with and
without evolution of the dilatancy angle y. For cases in
which dilatancy evolves, it is assumed to decay exponen-
tially and obey

y ¼ y0 exp �0:693 ux=ux refð Þ½ 
: ð42Þ

The factor �0.693 = ln (1/2) is included as a convenience in
(42) to make y decay to half its initial value y0 when slide
block displacement equals the reference value ux ref.
Appropriate values of ux ref for landslides are not well
constrained, but data from laboratory ring shear tests with
landslide soil specimens 7 cm thick imply values ux ref �
0.1 m [e.g., Iverson et al., 2000]. Larger values of ux ref are
probably applicable if shear deformation is accommodated
in thicker zones, because evolution of dilatancy depends on
shear strain, and the average shear strain equals ux divided by
the shear zone thickness. Owing to uncertainty about shear
zone thicknesses, shear strains, and the rate of dilatancy
decay, computational results are presented for landslides
with assumed ux ref values ranging from 0.1 to 10 m.
[42] Table 1 lists the other parameter values used in the

computations. The values are appropriate for contractive
and dilative sand-rich experimental landslides described by
Iverson et al. [2000] and for the intensively monitored, clay-
rich Minor Creek landslide in northwestern California

[Iverson, 1984, 1986a, 1986b, 1986c; Iverson and Major,
1987; Hovind, 1990]. The tabulated f values apply for
critical state conditions in which y = 0 (although the
effective basal friction angle consists of the sum of f and
y, as described in section 2.1). For cases in which y decays
(and therefore a decays), the tabulated y and a represent
initial values.
[43] Computational results for all scenarios are shown in

graphs (Figures 5–9) that depict coupled evolution of slide
block displacement ux and the imposed and total basal pore
pressures, pi and p. The excess basal pore pressure pe is not
graphed explicitly because it commonly has values <0;
however, pe is easily inferred from the graphs through the
relation pe = p � pi. Computations used to generate all but
one graph (Figure 9) used the initial condition p = pi = pcrit
at t = 0. Therefore slide block motion commences at the
origin of each graph, although the first stages of motion are
generally not discernable because the net driving force is
initially minuscule.

4.1. Loamy Sand Landslide With Contractive Soil

[44] The computational results depicted in Figure 5 illus-
trate how contraction of basal shear zone soil produces
runaway instability and rapid acceleration during slope
failure, corroborating inferences from equation (38).
Figure 5a depicts baseline behavior in the absence of shear
zone volume change, and Figure 5b depicts behavior when
the shear zone contracts with a dilatancy angle y = �6�. All
other parameters used to generate the two panels are
fixed and are listed in Table 1. For simplicity the water table
height Z is set equal to the slide block thicknessH, but results
are quite insensitive to alternative values of Z specified
within reasonable bounds, as explained in section 4.2.
[45] Figures 5a and 5b show pronounced differences in

both the evolution of basal pore pressure and the rate of
slide block acceleration. (Note the 20-fold difference in
timescales of Figures 5a and 5b.) Without shear zone
contraction and pore pressure feedback, acceleration occurs
gradually owing to a net driving force that scarcely exceeds
the limit equilibrium value 0, and the total basal pore

Figure 5. Graphs illustrating evolution of displacement and basal pore pressure computed using
parameter values appropriate for an experimental landslide composed of loose loamy sand [Iverson et al.,
2000]. Parameter values are listed in Table 1. (a) Behavior with dilatancy angle y = 0. (b) Behavior with
dilatancy angle y = �6�.
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pressure remains equal to the imposed pressure (Figure 5a).
With shear zone contraction, slide block acceleration is
increased roughly 20-fold as a consequence of positive pore
pressure feedback that causes basal pressure to increase
dramatically after failure commences (Figure 5b). Basal
pore pressure is subsequently capped at a ‘‘liquefaction
limit’’ in which basal effective normal stress and Coulomb
friction vanish. The rapid acceleration and pore pressure
change shown in Figure 5b mimic behavior observed in
landslide experiments with contractive sandy soil [Iverson
et al., 1997, 2000].
[46] A significant detail in Figure 5b involves the timing

of the pore pressure increase that results from shear zone
contraction. To avoid production of excess basal pore
pressure when displacements are too small to generate much
contraction, y is held at zero until the displacement reaches
ux = 0.1 mm. Displacements of this magnitude occur at t �
0.207 s, and pore pressure increase occurs rapidly thereafter.

4.2. Loamy Sand Landslide With Dilative Soil

[47] Figures 6 and 7 depict computational results for a
scenario similar to that considered in section 4.1, except that

the soil is dense and dilative rather than loose and contrac-
tive [cf. Iverson et al., 2000]. Table 1 lists parameter values
used in the computations. Cases in which the dilatancy
angle y is constant (Figure 6) and decaying (Figure 7) are
considered.
[48] Figure 6 depicts short-term and long-term behavior

when y is fixed at 6� but values of the water table height Z
differ. The maximum value of Z is the slide block thickness
H, and the minimum value of Z is constrained by the fact
that the initial imposed basal pore pressure must equal the
pressure pcrit necessary to trigger motion. Provided that
the downward groundwater flux qz is zero or positive, the
minimum water table height is given by Zmin = pcrit/(rwg cos
q), which applies for slope-parallel groundwater flow [cf.
Iverson, 1991]. Figure 6 shows that the effects of Z within
the range Zmin � Z � H are quite modest.
[49] Figure 6 shows slide block accelerations roughly

0.01 times as large as in a comparable case without dilation
(Figure 5a), and shows that the total basal pore pressure p
remains close to the limit equilibrium value pcrit despite
growth of the imposed basal pore pressure pi. Negative
feedback due to generation of negative excess pore pressure

Figure 6. Graphs illustrating the influence of water table height Z on evolution of slide block
displacement and basal pore pressure computed using parameter values appropriate for an experimental
landslide composed of dense loamy sand [Iverson et al., 2000]. Parameter values are listed in Table 1. Excess
basal pore pressure is represented graphically by pe = p � pi. (a, c) Short-term behavior. (b, d) Long-term
behavior.
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pe = p � pi maintains this state, thereby helping to stabilize
slide block motion and inhibit rapid acceleration. The
existence of this stabilizing effect corroborates analytical
inferences described in section 3.
[50] Figures 6a and 6c have time and displacement scales

magnified ten times relative to those of Figures 6b and 6d,
and comparison of Figures 6a and 6c with Figures 6b and
6d shows that stabilization of slide block motion is greatest

during the first �2000 s. Thereafter, stabilization weakens
and slide block acceleration increases as the imposed pore
pressure pi continues to grow.
[51] Figure 7 shows how the behavior depicted in

Figure 6d changes if the dilatancy angle y decays from
its initial value of 6�. The slide block displacement shown in
Figure 7a differs only subtly from that shown in Figure 6d
because the distance for half-decay of y in Figure 7a is
large, ux ref = 10 m. Nonetheless, a slight declining trend in
total basal pore pressure is evident in Figure 7a, and this
trend accompanies progressive weakening due to decay ofy.
Declining basal pore pressure partially compensates for this
weakening, and thereby prevents rapid acceleration of the
slide block. However, if the decay distance of y is reduced,
both slide block acceleration and the attendant decline of
basal pore pressure become more prominent (Figures 7b
and 7c). Basal pore pressure reduction due to dilation does
not keep pace with slide block motion, particularly after
displacements exceed the dilatancy decay distance ux ref.
[52] Figure 7c shows an important feature that appears in

all computations with dilatancy decay if the computations
are extended to include displacements several times larger
than ux ref. Near the right margin of Figure 7c the total basal
pore pressure reaches a minimum and then rises abruptly.
The minimum marks the limit of the stabilizing influence of
dilatant pore pressure reduction, as thereafter dilation is so
slight that negative pore pressure production does not keep
pace with the rate of pressure diffusion into the dilating
shear zone. This unstable response produces runaway
acceleration somewhat analogous to that which accompa-
nies liquefaction (Figure 5b).

4.3. Clay-Rich Landslide With Dilative Soil

[53] Figure 8 depicts graphs analogous to those of
Figures 6 and 7, except that the graphs were generated using
parameter values appropriate for the clay-rich Minor Creek
landslide in northwestern California [Iverson, 1984, 1986a,
1986b, 1986c; Iverson and Major, 1987]. The Coulomb
friction angle, dilatancy angle, and hydraulic conductivity
and diffusivity of this landslide all have values significantly
smaller than those of loamy sand (Table 1). The thickness H
of Minor Creek landslide averages about 6 m, and the wet
season water table height Z averages about 5.6 m (i.e., the
water table is nearly at the ground surface).
[54] Figure 8a shows baseline results obtained using a

constant dilatancy angle, y = 3�. The small slide block
acceleration evident in this graph persists despite the fact
that the imposed basal pore pressure increases at nearly
the maximum feasible rate. The acceleration is roughly
0.001 times as large as that shown in Figure 6d, and in
7 months it produces a total displacement less than 2 m. The
stabilizing influence of dilatancy and pore pressure feedback
is very strong in this case owing to the effects of low hydraulic
conductivity and diffusivity, which combine to yield a very
large value of a (Table 1).
[55] Figures 8b–8d show how behavior changes if the

dilatancy angle decays as slide block displacement proceeds.
The graphs are qualitatively very similar to those of Figure 7,
but in Figures 8b and 8c the slide block accelerations are
roughly 0.001 times as large as those shown in Figure 7 for
corresponding values of the decay constant, ux ref. Near the
right margin of Figure 8d, the total basal pore pressure p

Figure 7. Graphs illustrating the influence of the dilatancy
decay constant ux ref on evolution of slide block displace-
ment and basal pore pressure computed using parameter
values appropriate for landslide experiments with dense
loamy sand (Table 1). All computations use Z = 0.46 m.
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exhibits the same type of instability as that shown in
Figure 7c, although onset of the instability in Figure 8d is
delayed owing to the large value of a. As in Figure 7c, the
instability shown in Figure 8d signals the end of stabilization
by negative pore pressure feedback.
[56] Figures 9 and 10 compare the measured behavior of

Minor Creek landslide with model behavior that occurs in
response to transient forcing by seasonal rainfall that causes
seasonal changes in imposed basal pore pressure. The
model results shown in Figure 9 apply for a constant
dilatancy y = 3� and use a simple history of imposed basal
pore pressure to mimic the effects of seasonal rainfall at
Minor Creek landslide. The imposed basal pore pressure pi
increases steadily for 6 months in response to wet season
rain infiltration, and then decreases steadily during the
ensuing dry season. The initial basal pore pressure is less
than the pressure pcrit necessary to trigger motion. Thus in
Figure 9 landslide motion does not commence until 5 
106 s (about 58 days) after rainfall commences. Figure 10
shows analogous behavior measured at Minor Creek
landslide over a 3 year period in which rainfall and
groundwater responses varied somewhat from year to
year [Iverson and Major, 1987].

[57] The model results and landslide behavior shown in
Figures 9 and 10 are similar in several key respects. First,
both the model and data indicate a gradual onset of seasonal
landslide acceleration followed by prolonged, nearly steady
motion and subsequent gradual deceleration. In both the
model and data, acceleration commences when basal pore
pressures exceed a critical threshold level, and pore pres-
sures do not rise much above this threshold level during the
prolonged period of nearly steady landslide motion. The
model indicates that modulation of both basal pore pressure
and landslide motion is a consequence of shear zone
dilation and attendant pore pressure depletion that tends to
offset the effect of rain infiltration. The net result is that
the landslide tends to move steadily in response to nearly
steady basal pore pressure in excess of a critical value – a
response that superficially resembles viscoplastic behavior
[cf. Iverson, 1985].
[58] Taken together, the model’s dilatancy angle (y = 3�)

and the downslope displacement shown in Figure 9
(�0.75 m) imply a total slope-normal displacement of about
4 cm. If the dilatancy angle were reduced, the slope-normal
displacement would decline in proportion, as would the
amount of negative feedback available to regulate landslide

Figure 8. Graphs illustrating the influence of the dilatancy decay constant ux ref on evolution of slide
block displacement and basal pore pressure computed using parameter values appropriate for Minor
Creek landslide (Table 1). All computations use Z = 5.6 m.
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motion. Thus the model predicts that a few centimeters of
wet season uplift of the surface of Minor Creek landslide is
required to produce the observed, slow, stabilized motion.
Surveys conducted at Minor Creek landslide to date have
provided inadequate resolution of slope-normal motion to
test this model prediction, but such surveys may be feasible
in the future.

5. Concluding Discussion

[59] Landslide motion that is resisted only by Coulomb
friction but stabilized by dilatancy and negative pore pres-
sure feedback can bear a strong resemblance to motion
resisted by viscous deformation. However, a crucial distinc-
tion exists between these modes of motion. Whereas creep-
ing viscous flow is inherently stable with respect to small

perturbations, stabilization of motion by dilatancy can be
transitory and can evolve into rapid acceleration. Whether
or not such a transition occurs depends on both the physical
properties of the landslide soil and the history of forcing by
rain infiltration. If a values are very large (as is typical for
clay-rich landslides) and forcing by rainfall is ephemeral,
slow motion might be stabilized permanently by dilatancy
and feedback. However, permanently stabilized motion
requires that the dilatancy angle y does not decay too much
during periods of motion, and then recovers to a sufficiently
large value during periods of landslide dormancy. Possible
mechanisms for dilatancy recovery include dry season soil
consolidation and/or dessication. On the other hand, if a
values are relatively small (as is typical for sand-rich land-
slides), stabilization of slow motion is weaker and more
transitory. In such circumstances transitions from slow,
nearly steady motion to rapid acceleration can occur quickly.
Ifa < 0, landslide motion is inherently unstable, and runaway
acceleration is inevitable.
[60] Owing to the superficial similarity of inherently

stable viscous motion and motion transiently stabilized by
dilatancy and pore pressure feedback, field measurements
of landslide velocities provide inadequate constraints for
understanding or forecasting long-term landslide behavior.
However, as noted in section 4.3, high-resolution field
measurements of surface elevation change can help deter-
mine whether dilation is sufficient to stabilize slow motion.
Other key ingredients for such a determination include
knowledge of the landslide velocity and the parameters that
compose a (equation (28)).
[61] Laboratory studies aid testing of components of the

dilatancy feedback model. Detailed monitoring of laboratory
landslides with thoroughly characterized soil properties
generally supports the importance of coupling between
landslide emotion and pore pressure feedback [e.g.,
Eckersley, 1990; Iverson et al., 2000; Wang and Sassa,
2003]. However, such studies have been limited to landslides
composed of relatively high permeability soil, and traditional
laboratory strength testing of clay-rich soil demonstrates the
difficulty of generating reproducible results with such mate-
rial [e.g., Watry and Ehlig, 1995]. Understanding of the

Figure 10. Measured precipitation histogram, basal pore water pressure p, and cumulative surface
displacement at Minor Creek landslide during 3 successive water years, beginning 1 October 1982 and
ending 30 September 1985 [cf. Iverson and Major, 1987]. The critical pore pressure necessary to trigger
seasonal motion is pcrit.

Figure 9. Graph illustrating the computed surface dis-
placement and basal pore water pressure p that occur in
response to seasonal changes in the imposed pore water
pressure pi at Minor Creek landslide. Parameter values used
in the computations are listed in Table 1.
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coupling between dilatancy, pore pressure, and landslide
motion may nevertheless be enhanced by laboratory soil
testing using nontraditional, stress-controlled apparatus that
mimics landslide behavior by permitting unrestricted strain
and pore pressure evolution [e.g., Moore and Iverson, 2002;
Sassa et al., 2004]. Such experiments also help characterize
evolution of the dilatancy angley as a function of shear strain,
although the problem remains that shear zones in land-
slides may be much thicker than those in laboratory
specimens.
[62] Laboratory experiments can also reveal styles of

behavior not represented by the model described here. For
example, episodic stick-slip cycles, which appear to be
regulated by negative pore pressure feedback, have been
observed in both experimental landslides [Iverson et al.,
2000] and in ring shear tests [Moore and Iverson, 2002], but
are not produced by the model. However, similarly episodic
motion is predicted by fault models that combine the effects
of pore pressure feedback with those of state- and rate-
variable friction [Segall and Rice, 1995]. Experimental
evidence for systematic rate dependence of friction in soils
is inconclusive [Tika et al., 1996]. Nonetheless, application
of state- and rate-variable friction without pore pressure
effects has shown signs of success in explaining some
landslide behavior [e.g., Helmstetter et al., 2004]. Investi-
gation of variable friction effects operating in conjunction
with pore pressure feedback in landslides therefore appears
warranted.

Appendix A: Imposed Pore Pressure
Distribution pi(z, t)

[63] This appendix describes how the imposed pore
pressure distribution specified by equation (8) represents
the effect of transient rain infiltration, while neglecting
details of the infiltration process itself. Consider a situation
with a preexisting water table positioned at height z = Z
above the slide block base at height z = 0 (Figure 1). Then, if
transient rain infiltration causes the downward slope-normal
water influx at z = Z to exceed the slope-normal efflux at z =
0, the pore pressure pi(z, t) at heights 0 � z � Z must
increase. Downward water fluxes in the domain 0 � z � Z
are assumed to obey Darcy’s law, which in this instance has
the special form

qz ¼ K cos qþ 1=rwgð Þ@pi=@z½ 
; ðA1Þ

where rw is the pore water density, K is the saturated
hydraulic conductivity, q is the slope angle, and qz is the
specific discharge (volumetric water flux per unit area) in
the negative z direction. Generally, this downward discharge
is driven mostly by the gravity term cos q but is modulated
by the pore pressure gradient @pi/@z.
[64] To represent an imbalance in qz between z = Z and

z = 0, it is convenient to specify the imposed pore pressure
gradients at z = Z and z = 0 as

@pi
@z

Z; tð Þ ¼ �rwgb ðA2Þ

@pi
@z

0; tð Þ ¼ �rwg bþ gð Þ: ðA3Þ

In (A2) and (A3), b is a dimensionless coefficient (generally
0 � b � 1) that describes the magnitude of a background,
steady state pore pressure gradient �rwgb that exists in the
absence of a flux imbalance. For the special case with b =
cos q, the steady state gradient is hydrostatic and the
downward water flux specified by (A1) is zero. In (A3), g is
a dimensionless coefficient that summarizes the magnitude
of a flux imbalance between z = Z and z = 0. If g > 0, then
the downward water flux at z = Z exceeds that at z = 0, and
the resulting accumulation of water between z = Z and z = 0
is accompanied by increased pore pressure. This simple
picture of pore pressure change neglects phenomena that
occur above height z = Z, where pressures may become
positive during rain infiltration.
[65] The coefficient g can be expressed in terms of

physical variables by employing some standard definitions
used in the theory of saturated porous media. Pressurization
of water in a saturated, deformable porous medium is
accompanied by volumetric strain (i.e., porosity increase),
and the relationship between pressurization and strain can
be quantified with varying degrees of sophistication [e.g.,
Rice and Cleary, 1976]. In groundwater hydrology, the
relationship between pressurization and strain is commonly
summarized in terms of a storage coefficient, which
describes the volume of water accumulated within a unit
volume of porous medium per unit increase in pressure
head, pi/rwg. The storage coefficient S can be expressed in
terms of K and D as [Freeze and Cherry, 1979, pp. 59–61]

S ¼ K=D: ðA4Þ

When integrated from z = 0 to z = Z, S describes the volume
of water accumulated within the total thickness of the
saturated zone per unit increase in pressure head. That is, for
a unit increase in pressure head, the integral

Zz
0

Sdz ¼ K=Dð ÞZ ðA5Þ

provides a nondimensional description of the net water
accumulation (or flux imbalance) between z = Z and z = 0.
The quantity (K/D)Z in (A5) is analogous to the ground-
water storativity defined in aquifer hydraulics [Freeze and
Cherry, 1979, p. 61], and like the storativity, (K/D)Z applies
only to fully saturated conditions.
[66] Equation (A5) is easily generalized to address cases

in which the change in pressure head differs from a unit
change in pressure head by a factor W (where 0 � W � 2 is
typical). For this arbitrary change in pressure head, (A5)
becomes

W

Zz
0

Sdz ¼ W K=Dð ÞZ ¼ g: ðA6Þ

This equation defines the relationship between the flux
imbalance coefficient g and the pressure head change factor
W. Although g is used in the lower boundary condition
(A3), the substitution g = W(K/D)Z is employed in (11)
because it helps reveal the effects of the physical parameters
K, D and Z.
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[67] The imposed pore pressure distribution ((8) or (12))
is determined by satisfying (10) and (11) along with the
governing diffusion equation (9). The intentionally simplis-
tic hydrology represented by this imposed pore pressure
distribution is illustrated graphically in Figure 2. Graphs are
shown for a typical value of b (0.5) and for the range of
W(K/D)Z values most plausible for landslides. For example,
W(K/D)Z � 0.1 applies under conditions prevalent in
shallow, high-permeability landslides studied by Iverson et
al. [2000] andMontgomery et al. [2002], whereasW(K/D)Z�
1/3 applies under conditions prevalent in a thick, clay-rich
landslide studied by Iverson and Major [1987]. Values of
W(K/D)Z as large as 1 would apply only in exceptional
circumstances. Figure 2 also depicts graphs of a linearized
version of (12) that omits the term z*(1 � z*). The corre-
spondence between the linear pressure distributions and exact
pressure distributions becomes closer as values of W(K/D)Z
decline. This correspondence shows that the transient pres-
sure distributions described by (8) and (12) converge toward a
sequence of steady state distributions as W becomes
arbitrarily small.
[68] As shown in Figure 2, equations (8) and (12) provide

no information about pressure distributions above height z =
Z, where variably saturated flow and water table accretion
may occur. Instead, the equations treat water table accretion
as a simple source of pore pressure, and imply that the
imposed pressure at z = Z grows with time according to
pi(Z,t) = rwgWKt. Although this pressure growth might be
used to estimate evolution of the water table height, such
estimates are illusory if landslide motion and pore pressure
feedback occur, because excess pressure pe then contributes
to regulation of the water table height. Indeed, as shown in
sections 3 and 4, in the presence of positive dilatancy a
strong tendency exists for excess pore pressure to offset
changes in the imposed pore pressure and thereby maintain
the water table at a preexisting height Z.

[69] Acknowledgment. This work benefited from the input of
several people, particularly David Schaeffer, Neal Iverson, Mark Reid,
Joseph Walder, and Rex Baum.
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